Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

نویسندگان

  • Ayumi Ishii
  • Miki Hasegawa
چکیده

An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesopor...

متن کامل

Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells.

A novel rear reflector structure that combines NIR light harvesting β-NaGdF4:Yb, Er, Fe upconversion nanoparticles (UCNPs) and light reflecting silver particles has been successfully used to improve the performance of dye-sensitized solar cells (DSSCs). The power conversion efficiency of DSSCs with a rear reflector was 7.04%, which is an increase of 21.3% compared to the cell without a rear ref...

متن کامل

Tuning upconversion through energy migration in core-shell nanoparticles.

Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, effic...

متن کامل

A paradigm shift in the excitation wavelength of upconversion nanoparticles.

The past two decades witnessed the emergence of upconversion nanoparticles as promising luminophores finding multifarious uses from biological studies to solar cells. Progress in their practical use, however, has been hampered by requirements to be excited within a narrow absorption band at around 980 nm. Since the main constituent of biological tissue--water--absorbs strongly in this region, s...

متن کامل

Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

Along with the development of science and technology, lanthanide-doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017